Fitness-distance-ratio based particle swarm optimization

نویسندگان

  • Thanmaya Peram
  • Kalyan Veeramachaneni
  • Chilukuri K. Mohan
چکیده

This paper presents a modification of the particle swarm optimization algorithm (PSO) intended to combat the problem of premature convergence observed in many applications of PSO. The proposed new algorithm moves particles towards nearby particles of higher fitness, instead of attracting each particle towards just the best position discovered so far by any particle. This is accomplished by using the ratio of the relative fitness and the distance of other particles to determine the direction in which each component of the particle position needs to be changed. The resulting algorithm (FDR-PSO) is shown to perform significantly better than the original PSO algorithm and some of its variants, on many different benchmark optimization problems. Empirical examination of the evolution of the particles demonstrates that the convergence of the algorithm does not occur at an early phase of particle evolution, unlike PSO. Avoiding premature convergence allows FDR-PSO to continue search for global optima in difficult multimodal optimization problems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Research of Blind Signals Separation with Genetic Algorithm and Particle Swarm Optimization Based on Mutual Information

Blind source separation technique separates mixed signals blindly without any information on the mixing system. In this paper, we have used two evolutionary algorithms, namely, genetic algorithm and particle swarm optimization for blind source separation. In these techniques a novel fitness function that is based on the mutual information and high order statistics is proposed. In order to evalu...

متن کامل

Research of Blind Signals Separation with Genetic Algorithm and Particle Swarm Optimization Based on Mutual Information

Blind source separation technique separates mixed signals blindly without any information on the mixing system. In this paper, we have used two evolutionary algorithms, namely, genetic algorithm and particle swarm optimization for blind source separation. In these techniques a novel fitness function that is based on the mutual information and high order statistics is proposed. In order to evalu...

متن کامل

Fitness-Distance-Ratio Based Particle Swarm Optiniization

This paper presents a modification of tlte panicle swarm optimization algorithm (PSO) intended to combat the problem ofpremature convergence observed in many applications of PSO. The proposed new algorithm moves particles towards neorby particles of higher fitness, instead of amacting each panicle towards just the best position discovered so far by any particle. This is accomplished by using th...

متن کامل

Optimization Using Particle Swarms with Near Neighbor Interactions

This paper presents a modification of the particle swarm optimization algorithm (PSO) intended to combat the problem of premature convergence observed in many applications of PSO. In the new algorithm, each particle is attracted towards the best previous positions visited by its neighbors, in addition to the other aspects of particle dynamics in PSO. This is accomplished by using the ratio of t...

متن کامل

S3PSO: Students’ Performance Prediction Based on Particle Swarm Optimization

Nowadays, new methods are required to take advantage of the rich and extensive gold mine of data given the vast content of data particularly created by educational systems. Data mining algorithms have been used in educational systems especially e-learning systems due to the broad usage of these systems. Providing a model to predict final student results in educational course is a reason for usi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003